

EE565:Mobile Robotics Lecture 8

Welcome

Dr. Ahmad Kamal Nasir

Today’s Objectives

- Stereo Vision
- Stereo Rectification
- Structure From Motion (SFM) : Environment mapping (Structure), Robot/Camera pose estimation (Motion)
- Epi-polar geometry for multi-view Camera motion estimation

Last Week: Optical Flow (LKT)

Motivation

Stereo Vision versus Structure from Motion

- Stereo vision:
- is the process of obtaining depth information from a pair of images coming from two cameras that look at the same scene from different but known positions
- Structure from Motion:
- is the process of obtaining depth and motion information from a pair of images coming from the same camera that looks at the same scene from different positions

Stereo Vision: working principle

- Observe scene from two different viewpoints and solve for the intersection of the rays and recover the 3D structure

The "human" binocular system

- Stereopsys: the brain allows us to see the left and right retinal images as a single 3D image
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «rectification»

Dr. Ahmad Kamal Nasir

7

The "human" binocular system

- Stereopsys: the brain allows us to see the left and right retinal images as a single 3D image
- The images project on our retina up-side-down but our brains lets us perceive them as «straight». Radial disotion is also removed. This process is called «rectification»

Make a simple test:

1. Fix an object
2. Open and close alternatively the left and right eyes.

- The horizontal displacement is called disparity
- The smaller the disparity, the farther the object

Stereo Vision: simplified case

- An ideal, simplified case assumes that both cameras are identical and aligned with the x-axis
- Can we find an expression for the depth Z_{p} of point P_{w} ?
- From similar triangles:

$$
\begin{aligned}
& \frac{f}{Z_{P}}=\frac{u_{l}}{X_{P}} \\
& \frac{f}{Z_{P}}=\frac{-u_{r}}{b-X_{P}}
\end{aligned}
$$

Disparity

- Disparity is the difference in image location of the projection of a 3D point in two image plane
- Baseline is the distance between the two cameras

Baseline

Stereo Vision: general case

- Two identical cameras do not exist in nature!
- Aligning both cameras on a horizontal axis is very difficult
- In order to use a stereo camera, we need to know the intrinsic extrinsic parameters of each camera, that is, the relative pose between the cameras (rotation, translation) \Rightarrow We can solve for this through camera calibration

Stereo Vision: general case

- To estimate the 3D position of P_{w} we can construct the system of equations of the left and right camera
- Triangulation is the problem of determining the 3D position of a point given a set of corresponding image locations and known

Stereo Vision: Correspondence Search

- Goal: identify corresponding points in the left and right images, which are the reprojection of the same 3D scene point
- Typical similarity measures: Normalized Cross-Correlation (NCC) , Sum of Squared Differences (SSD), Census Transform
- Exhaustive image search can be computationally very expensive! Can we make the correspondence search in 1D?

Stereo Vision: the epipolar constraint

- The epipolar plane is defined by the image point \mathbf{p} and the optical centers
- Impose the epipolar constraint to aid matching: search for a correspondence along the epipolar line

Stereo Vision: the epipolar constraint

- Using epipolar constraint, corresponding points can be searched for, along epipolar lines \Rightarrow computational cost reduced to 1 dimension!

Stereo Vision: Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)

Left
Right

Stereo Vision: Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)

Image from Left Camera
Image from Right Camera

Rotation

Stereo Vision: Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)

Image from Left Camera

Image from Right Camera

Stereo Vision: Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one) Image from Left Camera

Stereo Vision: Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one) Image from Left Camera

Stereo Vision: Epipolar Rectification

- Goal: transform the left and right image so that pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (usually the horizontal one)

Image from Left Camera
Image from Right Camera

16.03.2015

stereo wision: disparity map

- The disparity map holds the disparity value at every pixel:
- Identify correspondent points of all image pixels in the original images
- Compute the disparity (ul-ur) for each pair of

Left image

Right image correspondences

- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map

Disparity Map

stereorision: disparity nnap

- The disparity map holds the disparity value at every pixel:
- Identify correspondent points of all image pixels in the original images
- Compute the disparity (ul-ur) for each pair of correspondences
- Usually visualized in gray-scale images
- Close objects experience bigger disparity; thus, they appear brighter in disparity map

$$
Z=\frac{b f}{u_{l}-u_{r}}
$$

Stereo Vision: Summary

- Stereo camera calibration \Rightarrow compute camera relative pose
- Epipolar rectification \Rightarrow align images \& epipolar lines
- Search for correspondences
- Output: compute stereo triangulation or disparity map
- Consider how baseline \& image resolution affect accuracy of depth estimates

Structure From Motion

- Camera calibration / resection Known 3D points, observe corresponding 2D points, compute camera pose
- Point triangulation Known camera poses, observe 2D point correspondences, compute 3D point
- Motion estimation Observe 2D point correspondences, compute camera pose (up to scale)
- Bundle adjustment Observe 2D point correspondences, compute camera pose and 3D points (up to scale)

Camera Calibration

 (Perspective n-Point Problem)

Camera Calibration

- Given: n 2D/3D correspondences $x_{i} \leftrightarrow p_{i}$
- Wanted: $M=K \cdot[R \mid T]$ such that $\widetilde{x_{i}}=M \cdot p_{i}$
- Question: How many DOFs does have?
- The algorithm has two parts:
- Compute $M \in \mathbb{R}^{3 \times 4}$
- Decompose M into K, R, T via QR decomposition

Estimate M

- $\widetilde{x}_{i}=M \cdot p_{i}$
- Each correspondence generates two equations

$$
x=\frac{m_{11} X+m_{12} Y+m_{13} Z+m_{14} W}{m_{31} X+m_{32} Y+m_{33} Z+m_{34} W} \quad y=\frac{m_{21} X+m_{22} Y+m_{23} Z+m_{24} W}{m_{31} X+m_{32} Y+m_{33} Z+m_{34} W}
$$

- Re-arranged in matrix form

$$
\left(\begin{array}{cccccccccccc}
X & Y & Z & 1 & 0 & 0 & 0 & 0 & -x X & -x Y & -x Z & -x \\
0 & 0 & 0 & 0 & X & Y & Z & 1 & -y X & -y Y & -y Z & -y
\end{array}\right) \mathrm{m}=\mathbf{0}
$$

with $\mathbf{m}=\left(\begin{array}{llll}m_{11} & m_{12} & \ldots & m_{34}\end{array}\right) \in \mathbb{R}^{12}$

- Concatenate equations for $\mathrm{n} \geq 6$ correspondences $\boldsymbol{A} \cdot \boldsymbol{m}=\mathbf{0}$, use SVD

Structure from Motion: definition

- Problem formulation: Given many points correspondence between two images, $\left\{\left(u_{1}^{i}, v_{1}^{i}\right),\left(u_{2}^{i}, v_{2}^{i}\right)\right\}$, simultaneously compute the 3D location \boldsymbol{P}_{i}, the camera relative-motion parameters ($\boldsymbol{R}, \boldsymbol{t}$), and camera intrinsic $\boldsymbol{K}_{1,2}$ that satisfy

$$
\left\{\begin{array}{l}
\lambda_{1}\left[\begin{array}{c}
u^{i} \\
v_{1}{ }_{1} \\
1
\end{array}\right]=K_{1}[0 \mid 0] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y_{w_{w}}^{i} \\
Z_{w}^{i} \\
1
\end{array}\right] \\
\lambda_{2}\left[\begin{array}{c}
u^{i}{ }_{2} \\
v_{2} \\
1
\end{array}\right]=K_{2}[R \mid T] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y_{w_{w}} \\
Z_{w}^{w} \\
1
\end{array}\right]
\end{array}\right.
$$

Structure from Motion: definition

- We study the case in which the camera is «calibrated» (K is known)
- Thus, we want to find $R, T, P i$ that satisfy

$$
\left\{\begin{array}{l}
\lambda_{1}\left[\begin{array}{c}
\bar{u}^{i}{ }_{1} \\
\bar{v}^{i}{ }_{1} \\
1
\end{array}\right]=[I \mid 0] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y^{i}{ }_{w} \\
Z^{i}{ }_{w} \\
1
\end{array}\right] \\
\lambda_{2}\left[\begin{array}{c}
\bar{u}^{i}{ }_{2} \\
\bar{v}^{i}{ }_{2} \\
1
\end{array}\right]=[R \mid T] \cdot\left[\begin{array}{c}
X^{i}{ }_{w} \\
Y^{i}{ }_{w} \\
Z^{i}{ }_{w} \\
1
\end{array}\right]
\end{array}\right.
$$

Structure from Motion: how many

points?

- How many knowns and unknowns?
- 4n knowns:
- n correspondences; each one $\left(u_{1}^{i}, v_{1}^{i}\right)$ and $\left(u_{2}^{i}, v_{2}^{l}\right), i=1 \ldots n$
$-5+3 n$ unknowns
- 5 for the motion up to a scale (rotation $\mapsto 3$, translation $\mapsto 2$)
- $3 n=$ number of coordinates of the $n 3 D$ points
- Does a solution exist?
- Yes, if and only if the number of independent equations \geq number of unknowns
$\Rightarrow 4 n \geq 5+3 n \Rightarrow n \geq 5$

Cross Product (or Vector Product):

Review

$$
\vec{a} \times \vec{b}=\vec{c}, \quad\|\vec{c}\|=\|\vec{a}\| \vec{b} \| \sin (\theta) \cdot \vec{n}
$$

- Vector cross product takes two vectors and returns $\mathbf{a x b}^{\mathbf{a}}$ a third vector that is perpendicular to both inputs

$$
\begin{aligned}
& \vec{a} \cdot \vec{c}=0 \\
& \vec{b} \cdot \vec{c}=0
\end{aligned}
$$

- The cross product of two parallel vectors $=0$
- The vector cross product also can be expressed as the product of a skew-symmetric matrix and a vector

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{\times}\right] \mathbf{b}
$$

Epipolar Geometry

- $p 1, p 2, T$ are coplanar:

$$
\left.\begin{array}{l}
p_{2}^{T} \cdot n=0 \Rightarrow p_{2}^{T} \cdot\left(T \times p_{1}{ }^{\prime}\right)=0 \Rightarrow p_{2}^{T} \cdot\left(T \times\left(R p_{1}\right)\right)=0 \\
\Rightarrow p_{2}^{\mathrm{T}}[T]_{x} R p_{1}=0 \Rightarrow p_{2}^{T} E p_{1}=0 \quad \text { epipolar constraint } \\
\quad \mathrm{E}=[T]_{x} R \quad \text { essential matrix } \\
\bar{u}_{1} \\
\bar{v}_{1}
\end{array}\right]
$$

Epipolar Geometry

- The Essential Matrix can be computed from 5 image correspondences [Kruppa, 1913].
- The more points, the higher accuracy
- The Essential Matrix can be decomposed into R and T by recalling that $E=[T \times] R$ Two distinct solutions for R and T are possible (i.e., 4 -fold ambiguity)

$$
\begin{gathered}
p_{1}=\left[\begin{array}{c}
\bar{u}_{1} \\
\bar{v}_{1} \\
1
\end{array}\right] \quad p_{2}=\left[\begin{array}{c}
\bar{u}_{2} \\
\bar{v}_{2} \\
1
\end{array}\right] \text { Normalized image coordinates } \\
\begin{array}{cc}
p_{2}^{T} E p_{1}=0 & \text { Epipolar constraint } \\
\mathrm{E}=[T]_{\times} R & \text { Essential matrix }
\end{array}
\end{gathered}
$$

How to compute the Essential Matrix?

- The Essential Matrix can be computed from 5 image correspondences [Kruppa, 1913]. However, this solution is not simple. It took almost one century until an efficient solution was found! [Nister, CVPR'2004]
- The first popular solution uses 8 points and is called 8-point algorithm [Longuet Higgins, 1981]

Motion Estimation: The 8-point algorithm

$$
\begin{aligned}
& \boldsymbol{p}_{1}=\left(\bar{u}_{1}, \bar{v}_{1}, 1\right)^{T}, \quad \boldsymbol{p}_{2}=\left(\bar{u}_{2}, \bar{v}_{2}, 1\right) \quad p_{2}^{T} E p_{1}=0 \\
& {\left[\begin{array}{lll}
\bar{u}_{2} & \bar{v}_{2} & 1
\end{array}\right]\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]\left[\begin{array}{c}
\bar{u}_{1} \\
\bar{v}_{1} \\
1
\end{array}\right]=0} \\
& {\left[\begin{array}{llllllll}
u_{2} u_{1} & u_{2} v_{1} & u_{2} & v_{2} u_{1} & v_{2} v_{1} & v_{2} & u_{1} & v_{1}
\end{array}\right]} \\
& Q \text { (this matrix is } \\
& \text { known) } \\
& \text { under the constraint } \\
& \|\left. E\right|^{2}=1 \\
& Q \text { (this matrix is } \\
& E \text { (this matrix is } \\
& \text { unknown) }
\end{aligned}
$$

- A linear least-square solution is given through Singular Value Decomposition by the eigenvector of Q corresponding to its smallest eigenvalue (which is the unit vector that minimizes $|Q \cdot E|^{2}$)

Structure Estimation: Triangulation
 - Given: n cameras

$-M_{j}=K_{j} \cdot\left[R_{j} \mid t_{j}\right]$

- point correspondences x_{0}, x_{1}
- Wanted: Corresponding 3D point p

Structure from Motion: Summary

- Given: Image pair and camera Intrinsic parameters

$$
K=\left(\begin{array}{ccc}
f_{x} & s & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)
$$

- Find: Camera motion R,t (up to scale)
- Compute correspondences
- Compute essential matrix
- Extract camera motion
- Extract scene structure (triangulation)

Summary

- Stereo Vision
- Stereo Rectification
- Structure From Motion (SFM) : Environment mapping (Structure), Robot/Camera pose estimation (Motion)
- Epi-polar geometry for multi-view Camera motion estimation

Questions

