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Today’s Objectives 

• Stereo Vision 

• Stereo Rectification 

• Structure From Motion (SFM) : Environment 
mapping (Structure), Robot/Camera pose 
estimation (Motion) 

• Epi-polar geometry for multi-view Camera 
motion estimation  
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Last Week: Optical Flow (LKT) 
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Motivation 
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F:/Personal/Documents/Job/LUMS/Mobile Robotics/Course Material/Letures/Motivation/Real-time vision-aided inertial navigation on a cellphone- car localization.avi
F:/Personal/Documents/Job/LUMS/Mobile Robotics/Course Material/Letures/Motivation/Vision-Aided Inertial Navigation on a Quadrotor.avi
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Stereo Vision versus Structure from 
Motion 

• Stereo vision: 
– is the process of obtaining depth information from 

a pair of images coming from two cameras that 
look at the same scene from different but known 
positions 

• Structure from Motion: 
– is the process of obtaining depth and motion 

information from a pair of images coming from 
the same camera that looks at the same scene 
from different positions 
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Stereo Vision: working principle 

• Observe scene from two different viewpoints and 
solve for the intersection of the rays and recover 
the 3D structure 
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The “human” binocular system 

• Stereopsys: the brain allows us to see the left and right 
retinal images as a single 3D image  

• The images project on our retina up-side-down but our 
brains lets us perceive them as «straight». Radial disotion is 
also removed. This process is called «rectification»  
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Stereo Vision: simplified case 

• An ideal, simplified case assumes that both cameras are identical 
and aligned with the x-axis  

• Can we find an expression for the depth  
𝑍𝑝 of point 𝑃𝑤?  

• From similar triangles: 
 
 
 
 
 

• Disparity is the difference in image location of 
 the projection of a 3D point in two image planes  

• Baseline is the distance between the two cameras 
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Stereo Vision: general case 

• Two identical cameras do not exist in nature! 
• Aligning both cameras on a horizontal axis is very difficult 
• In order to use a stereo camera, we need to know the 

intrinsic extrinsic parameters of each camera, that is, the 
relative pose between the cameras (rotation, translation) 
⇒ We can solve for this through camera calibration 
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Stereo Vision: general case 

• To estimate the 3D position of 𝑃𝑤 we can 
construct the system of equations of the left and 
right camera  

• Triangulation is the problem of determining the 
3D position of a point given a set of 
corresponding image locations and known 
camera poses.  
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Left camera: set the 
world frame to coincide 
with the left camera 
frame  

Right camera:  
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Stereo Vision: Correspondence Search 
• Goal: identify corresponding points in the left and right 

images, which are the reprojection of the same 3D scene 
point 
– Typical similarity measures: Normalized Cross-Correlation (NCC) 

, Sum of Squared Differences (SSD), Census Transform 
– Exhaustive image search can be computationally very expensive! 

Can we make the correspondence search in 1D? 
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Stereo Vision: the epipolar constraint  

• The epipolar plane is defined by the image point 𝐩 and 
the optical centers  

• Impose the epipolar constraint to aid matching: search 
for a correspondence along the epipolar line  
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Stereo Vision: the epipolar constraint  

• Using epipolar constraint, corresponding 
points can be searched for, along epipolar 
lines ⇒ computational cost reduced to 1 
dimension!  
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Stereo Vision: Epipolar Rectification 

• Goal: transform the left and right image so that pairs of 
conjugate epipolar lines become collinear and parallel 
to one of the image axes (usually the horizontal one)  
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Rotation 
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Stereo Vision: disparity map 

• The disparity map holds the 
disparity value at every pixel: 
– Identify correspondent points 

of all image pixels in the original 
images 

– Compute the disparity (𝑢𝑙 − 𝑢𝑟 ) 
for each pair of 
correspondences  

• Usually visualized in gray-scale 
images  

• Close objects experience bigger 
disparity; thus, they appear 
brighter in disparity map 
 

16.03.2015 Dr. Ahmad Kamal Nasir 21 



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry  

Stereo Vision: disparity map 

• The disparity map holds the 
disparity value at every pixel: 
– Identify correspondent points 

of all image pixels in the original 
images 

– Compute the disparity (𝑢𝑙 − 𝑢𝑟 ) 
for each pair of 
correspondences  

• Usually visualized in gray-scale 
images  

• Close objects experience bigger 
disparity; thus, they appear 
brighter in disparity map 
 

16.03.2015 Dr. Ahmad Kamal Nasir 22 



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry  

Stereo Vision: Summary 

• Stereo camera calibration ⇒ compute camera relative pose 

• Epipolar rectification ⇒ align images & epipolar lines 

• Search for correspondences 

• Output: compute stereo triangulation or disparity map 

• Consider how baseline & image resolution affect accuracy of 
depth estimates 
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Structure From Motion 

• Camera calibration / resection Known 3D points, 
observe corresponding 2D points, compute camera 
pose 

• Point triangulation Known camera poses, observe 2D 
point correspondences, compute 3D point 

• Motion estimation Observe 2D point correspondences, 
compute camera pose (up to scale) 

• Bundle adjustment Observe 2D point 
correspondences, compute camera pose and 3D points 
(up to scale) 
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Camera Calibration 
(Perspective n-Point Problem) 
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Camera Calibration 
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• Given: n 2D/3D correspondences 𝑥𝑖 ⟷ 𝑝𝑖 

• Wanted:  𝑀 = 𝐾 ⋅ 𝑅|𝑇  
such that 𝑥𝑖 = 𝑀 ⋅ 𝑝𝑖 

• Question: How many DOFs does have? 

• The algorithm has two parts: 

– Compute 𝑀 ∈ ℝ3×4 

– Decompose 𝑀 into 𝐾, 𝑅, 𝑇 via QR decomposition 
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• 𝑥𝑖 = 𝑀 ⋅ 𝑝𝑖 

• Each correspondence generates two equations 

 

• Re-arranged in matrix form 

 

 

• Concatenate equations for n≥6 
correspondences 𝑨 ⋅ 𝒎 = 𝟎, use SVD 

 

Estimate M 
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Structure from Motion: definition 

• Problem formulation: Given many points correspondence 
between two images, *(𝑢1

𝑖 , 𝑣1
𝑖), (𝑢2

𝑖 , 𝑣2
𝑖 )+, simultaneously 

compute the 3D location 𝑷𝑖, the camera relative-motion 
parameters (𝑹, 𝒕), and camera intrinsic 𝑲1,2 that satisfy  
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Structure from Motion: definition 

• We study the case in which the camera is 
«calibrated» (𝐾 is known)  

• Thus, we want to find 𝑅, 𝑇, 𝑃𝑖 that satisfy  
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Structure from Motion: how many 
points?  

• How many knowns and unknowns?  
– 𝟒𝒏 knowns: 

• 𝑛 correspondences; each one 
(𝑢1

𝑖 , 𝑣1
𝑖) and (𝑢2

𝑖 , 𝑣2
𝑖 ), 𝑖 = 1 … 𝑛 

– 𝟓 + 𝟑𝒏 unknowns 
• 5 for the motion up to a scale  

(rotation ↦ 3, translation ↦ 2)  
• 3𝑛 = number of coordinates of the 𝑛 3D points 

• Does a solution exist?  
– Yes, if and only if the number of independent 

equations ≥ number of unknowns  
⇒ 4𝑛 ≥ 5 + 3𝑛 ⇒ n ≥ 𝟓 
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Cross Product (or Vector Product): 
Review 

 

• Vector cross product takes two vectors and returns 
a third vector that is perpendicular to both inputs  

 

 

• The cross product of two parallel vectors = 0  

• The vector cross product also can be expressed as the product 
of a skew-symmetric matrix and a vector  
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Epipolar Geometry  
• 𝑝1, 𝑝2, 𝑇 are coplanar:  
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Epipolar Geometry 
• The Essential Matrix can be computed from 5 image 

correspondences [Kruppa, 1913].  
– The more points, the higher accuracy 

• The Essential Matrix can be decomposed into 𝑅 and 𝑇 by 
recalling that 𝐸 = 𝑇 × 𝑅 Two distinct solutions for R and T  
are possible (i.e., 4-fold ambiguity)  
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How to compute the Essential 
Matrix? 

• The Essential Matrix can be computed from 5 
image correspondences [Kruppa, 1913]. 
However, this solution is not simple. It took 
almost one century until an efficient solution 
was found! [Nister, CVPR’2004]  

• The first popular solution uses 8 points and is 
called 8-point algorithm [Longuet Higgins, 
1981]  
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Motion Estimation: The 8-point 
algorithm  

• A linear least-square solution is given through Singular Value 
Decomposition by the eigenvector of Q corresponding to its smallest 
eigenvalue (which is the unit vector that minimizes 𝑄 ⋅ 𝐸 2)  
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Structure Estimation: Triangulation 
• Given: n cameras  

–𝑀𝑗 = 𝐾𝑗 ⋅ 𝑅𝑗|𝑡𝑗  

– point correspondences 𝑥0, 𝑥1 

• Wanted: Corresponding 3D point p 
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Structure from Motion: Summary 

• Given: Image pair and camera Intrinsic parameters 

 

 

 

 

• Find: Camera motion R,t (up to scale) 
– Compute correspondences 

– Compute essential matrix 

– Extract camera motion 

– Extract scene structure (triangulation) 
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Summary 

• Stereo Vision 

• Stereo Rectification 

• Structure From Motion (SFM) : Environment 
mapping (Structure), Robot/Camera pose 
estimation (Motion) 

• Epi-polar geometry for multi-view Camera 
motion estimation  
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Questions 
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